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Parabolic numerical method for
investigating free surface flows

S. R. Cakmakci and W. L. Hankey

Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, USA

Although one-dimensional analysis is a classical, accepted method used extensively in
the literature and has been commonly used for the comparison with approximation
methods for the solution of free surface flows, the requirement to specify the skin friction
coefficient value has always been a constraint with which previous investigators have had
trouble. The alternative method of solving the full Navier-Stokes equations requires
substantial computer time because of the iteration necessary to resolve the location of the
free surface boundary. A relatively simple parabolic numerical method for the thin-layer
equations in two dimensions to solve the free surface flows without the need of assuming
the skin friction coefficient and the need of iterating the free surface boundary is the
purpose of this investigation. An order-of-magnitude analysis is used to reduce the elliptic
governing Navier-Stokes equations to a parabolized set for high Reynolds numbers, The
resulting equations are discretized and solved numerically for different sub and super-
critical flows, various Pr, Fr, and Re numbers and for many different thermal boundary

conditions using an implicit marching method employing the tridiagonal algorithm.

Keywords: thin layer; free surface boundary; skin friction coefficient: parabolic method

Introduction

Free surface flow refers to the flow of liquid wherein a portion
of the uppermost boundary of the flow called the free surface
is subject to atmospheric pressure. The movement of oceans.
rivers, and irrigation systems, as well as the flow of liquids in
partially filled pipes, and flows in canals are all examples of
free surface flows. The forces causing flow are attributable 1o
gravily, surface tension, and the forces retarding flow arc
attributable to viscous shear. Thus, the Weber number, the
Froude number, and the Reynolds number arc involved. When
flow occurs at low velocities so that a small disturbance can
travel against the flow and thus cffect the conditions upstream.
it is said 1o be subcritical flow (Fr < 1). If, on the other hand.
the velocity of the stream is so high that a small disturbance.
such as an elementary wave, is washed downstream. the flow
is controlled by upstream conditions and is described as
supercritical (Fr > 1). When flow velocity is just equal to the
elementary wave velocity, the flow is called critical (Fr = 1).
The complete solutions of free surface flows are usually
difficult to obtain because of the variable geometrical
conditions and the state of the boundary surfaces. Therefore. a
choice of a suitable friction factor is likely to be very uncertain.
Two general approaches are used for analyzing free surface
flows: (1) the Navicer-Stokes method. which is elliptic and
requires at least an order of magnitude greater computer time
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than the parabolic method used in this paper; and (2) the
one-dimensional method (Potter and Wiggert), which is rapid
but requires specification of the skin friction that could be
constant or vary as a function of axial distance.

For two-dimensional (2-D) free surface flows, numerical
methods have been used by a number of investigators. Kothe
and Mjolsness (1992), developed a numerical method for
incompressible flows with free surfaces having significant
surface tension forces. Jimenéz and Chaudhry (1988) solved the
supercritical free surface flows by explicit numerical methods.
Fennema and Chaudhry (1990) studied the explicit numerical
methods for 2-D free surface flows. Rahman et al., (1990a,
1990b) solved the full Navier-Stokes equations by iterating the
free surface boundary of free surface flows.

The brief literature survey presented in the foregoing reveals
no parabolized numerical method to solve the free surface flows
without requiring excessive computer time, or the skin friction
coefhicient. which is the purpose of this investigation.

A mcthod is developed in this paper that determines the skin
friction value intrinsically but saves over an order of magnitude
in computer time compared to solving the complete
Navier-Stokes equations. The method involves a parabolic
procedure for the thin-layer equations describing free surface
flows. This approach is analogous to parabolized Navier—-
Stokes equations (PNS), which are popular in the aerospace
industry and used to solve compressible supersonic flows
(Hankey. 1983). The Space Shuttle and the Aerospace Plane
programs have exploited the use of PNS. The approach herein
adopts this concept to solve difficult free surface flows.

The 2-D free surface flows for the steady laminar flow of a
viscous incompressible fluid with heat transfer have been
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analyzed for both subcritical and supercritical flow conditions.
Typical applications of this proposed parabolized solver for the
thin-layer problems are for liquid cooling of elements used in
coating processes, drying of different materials. gas absorption
processes, and condensation processes.

Mathematical modeling of the
hydrodynamical problem

The 2-D (x.y) governing equations of continuity and
momentum for the laminar steady flow of Newtonian fluid with
constant properties (dynamic viscosity p, and density p arc
constants), without a velocity component in the z-direction
(w = 0). and without the body forces in x and - directions in
rectangular coordinates, with the assumption that the velocity
film thickness h(x) is very thin compared with the radial
distance x: ic.. x » hix) as a result of the order-of-magnitude
analysis are as follows:

Continuity:

+1~:0 (h

3 Ctu
u_ +rv o o=—gh +v | (2)
‘x cy ‘y*

The boundary conditions are as follows:

(1) Noslipat wall;ie,at v =0:u=0v=0
(2) v =h(x): u = ux)

At the free surface v = h(x). the effects of interfacial shear
stress and the surface tension are assumed to be zero. although
thesc can simply be added if desired.

To determine the pressure field for the problem. the
y-momentum equation is integrated with respect to 1. and
applying the free surface boundary conditions the pressure field
becomes the following:

cr

The following transformation of independent variables
converts the original domain or physical plane into a
rectangular region or computational plane (Hankey and
Holden, 1975):

i= fj dx, j=1/h,, n = y/hix) 4)

F(Eon) = uju, (5)

where u, = x-component of edge surface velocity; P, =
atmospheric pressure (static part); 2udv/dy = viscous normal
stress: pylh(x) — v) = potential component of the pressure field;
h = velocity film thickness as a function of radial distance x;
and h;, = constant inlet film thickness.

By using the transformations, it is now possible to apply
finite differences on a uniformly spaced grid in the
computational ptane with the boundaries coinciding with the
lines # =0 and n = 1. To do this, the governing equations
(Equations 1 and 2) are transformed in terms of £ and 5 by
applying the chain rule of partial differentiation. Then, the
resulting thin layer equations are cast in conservation form in
order to apply numerical schemes.

Thus. the governing equations become as follows:

ty = ()l F,+ & F),] (©)
Fo,— VE, — [F =7+ 2WFF. (7)
where

Vo= (h- e —uFnhy) (8)
B =i v, ©)
Y = (jhigh.vu,) (10)
2 = (fhru,v) (1

By taking the derivative of Equation 8 with respect to x and
combining with Equation 6

Vot ok = — 2yF. (12)

where g = jh(hu,):/v, and f. ¢, and 7 are the functions of &,

P=—pgv+ P, + pghix) + 2u (3) By defining Froude number based on the edge velocity
‘v Fr, = u Agh)'’?, the relationship between the ¢, ., and Y is
Notation Greek
: . . ¥ t al diffusivity
A dimensionless temperature gradient " hermd! di usivity
. . . ” . A dimensionless film height
F(i. ) dimensionless velocity ) . N
- An increment in # direction
Fr Froude number 4 . AR
L ) A¢ increment in ¢ direction
g gravitational acceleration . - X
. . . n dimensionless function
G dimensionless temperature o .
] . o - it dynamic viscosity
h velocity film thickness : o :
T o v kinematic viscosity
h, thermal film thickness B} dimensionless horzontal distance
J transformation function ‘) dlr]?m ! 8§ honzontal distanc
k thermal conductivity f ensity
Nu local Nusselt number Subscrints
P pressure UbSCrIpLs
Pr Prandtl number ¢ edge
Q volume flow rate per unit width in condition at entrance
Re Reynolds number m node location in x direction
T temperature n node location in y direction
u component of velocity in x direction sat saturation
v component of velocity in v direction w condition on solid wall
w component of velocity in w direction 7. atmospheric
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obtained as
o=p+7Frl (13)
The boundary conditions become

() n=0:F=0,V=0
2 n=1F=1,F,=0V=0

where the subscript ¢ stands for “the edge of ™ free surface, and
the subscripts 7, 1. &, x. and y denote the derivatives.
Integrating Equation 12 at the free surface by using the
relationship of h, = v /u, gives the following:
™1

J F.dn
o=-2""¢

1
f Fdy
0

Integrating Equation 7 by using Equation 12, and the
definitions of f and ¢ with the boundary conditions. and
recollecting terms Y can be rewritten as follows:

(14)

™1 1
2aJ Fldy + 4y f FF.dy + F iy = 0)
0

]

Y= %2 _ . (15)
1 — Fr? f F*dy
0

In addition, an initial condition at x =0: ic. (Z=0) is
required for u. The arbitrary condition selected for this case is
F, =0, or an initial similarity start. Obviously. other initial
conditions may be explored.

For the similarity solution at the inlet, F is only a function
of n, and ¢, §, and Y are all constants; therefore, the general
free surface flow solutions (Equations 7 and 12) reduce to

F,,,,—VF,,—[}F:T {(10)
and
V,+aF =0 (17)

Finally, the constant volumetric flow rate per unit width
perpendicular to the flow plane Q becomes the following:

h 1
Q:j udy =uh J F dy (18)

0 0

Mathematical modeling of the
thermodynamic problem

To determine the thermal distribution it is necessary to solve
the equation resulting from the substitution of the solution of
the hydrodynamic problem into the energy equation. By using
the same assumptions as used for the hydrodynamical part of
the problem, and implementing the order-of-magnitude
analysis, the governing equation of energy for the laminar flow
of a Newtonian fluid with constant properties (thermal
conductivity k = constant, density p = constant) in rectangular
coordinates is

Energy
cT T T

U A (19
éx Cy v

It is assumed that both the velocity film thickness h and
thermal film thickness h, are very thin compared with the radial
distance x.

180

A dimensionless function G is introduced
T-T,
CT-T

¢ w

G (20)

with the boundary conditions

MHy=0T=T,.6=0
D y=h).T=T,G=1

where T, is the wall temperature; T, is the temperature at the
edge of the free surface; and both 7,, and T, are functions of
radial distance x only. _

By using Equations 4, 5, 8. 11, and 20, the energy equation
is nondimensionalized as follows:

G,, — PrVG, =2y Pr F(G. + AG + B) 21
where
(T, — . Fr? {n=20
(L= Ty _iFrl 4e Gun=0) o
T.-T. 2 4. 6G,n=0
T,
1, - T,

Pr is the Prandtl number, and A and B are dimensionless
temperaturc gradients. Integrating Equation 21 by using
Equation 12 with the boundary conditions and recollecting
terms

G,

If

=G =90
~1
= Pr [la + 2y AFG + 2p(FG): + 2§ BF] dy (24)

v

The Nusselt number Nu, in terms of film thickness is as follows
Nu, = G,{n = 0) (25)

To demonstrate the versatility of the method, an assortment
of different boundary conditions are examined.

The boundary conditions are assumed to be: A) the same as
the equilibrium temperature corresponding to the ambient
vapor pressure {evaporation case) at the free surface with Al)
constant wall temperature, A2) adiabatic wall surface, A3)
uniform heat flux on the wall, and A4) constant Nusselt
number: B) adiabatic free surface condition or heating case with
B1) constant wall temperature, B2) uniform heat flux on the
wall, and B3) constant Nusselt number.

Also. an initial upstream condition T(0, y) is required to start
the calculation. An arbitrary condition of G. = 0, or an initial
similarity start was selected. Obviously, other initial conditions
can be explored.

Table 1 summarizes the boundary conditions.

Numerical solution of the hydrodynamical
problem

To apply finite-difference methods, a finite-difference mesh in
the Z-n plane is considered (Figure 1). The values of the
dependent variables at a grid point are identified by subscripts
m and n» to indicate positions along the - and g-directions,
respectively.

The derivations in Equation 7 are replaced by the
central-difference approximations in the g-direction and
backward-difference approximations in the &-direction. Re-
writing the thin-layer nondimensional x-momentum (Equation
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Table 1 Boundary conditions

At the free surface n = 1:
Evaporation T,= Ty, = constant, G =1
Heating cT/iey=0, G, =0
At the wall n = O:

1) Constant wall temperature: T= T, = constant, G =0

(FG). dn

Evaporation A=B=0 G, - PrVG, = 2yPrFG,
1 1
G,(n=1}—G,(n=0) =Pro j FGdn + 24 Pr J
o 0
Heating A= T T~ Tu). B=0, G, — PrVG, = 2yPrF(G. + AG)

1 ~1 1
~G,(n=0) = Pro [ FGdy +2|//Pr[AJ FG dy + [ (FG). dr]]
(0] JO

vO

2) Adiabatic wall surface. ¢T/¢y=0, G, =0

Evaporation A= -T,/(Te—-T,), B=—A G, — PrVG, = 2yPrF(G_+ AG — A)

™ 1

G,(n=1)=Pro | FGdy+ 2¢Pr[AJ FGdy +
]

e

3) Constant wall heat flux: ~ k¢ T/(y = q,, = constant, {(g,, = 0)

~

1
(FG).dn — A ( Fdn}
Jo

Evaporation A= —T,./(T.~ T,) = vFr2/24y — G, .(n=0)/G(n=0), B=-A

M

G,(n=1)-G(n=0)=Pro

g

FGdn + 2y Pr[A

v O

Heating A=(T,— T, /(T,

~ r1

—G,(3=0) = Pra

)
4) Constant Nusselt number: Nu,, = constant, (G, (y = 0) = 0)

Evaporation A= —T,./(T.— T,) = ;Fi2/2% + q,./q,. B= — A

o1
G(n=1)— G,(n=0) = Pro J

0
Heating

i~

i~ 1

-G, (1 =0) =Pra

FGdy + 2wPr[A

JO v

7) in the finite-difference form and rearranging (Cheney and
Kincaid, 1985)

Fm.n = em‘nFm.nJr L + Worn (2())
where
Y]
am.n = 1 - -
2,,A1°F,
B = 2+ By Ayt 4 0
I/;YLVIA']
Cpn = ! + 5
W Fon Fo
Ag
(4
e = (R
" Pn = Conmn
W — dm.nrf ('Vm.n“‘mm—[
" hm.n — CounCmn 1
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FG dn +

FGdn + ZWPr[A FG dy +

n1
FG dn + J
0

where T, is the saturation temperature, and q,, is the wall heat flux.

™~ ~
(FG)_ dy— A J qu}
v O 0

“Tw) = :Fr2/2¢ — G, (= 0)/G,(n = 0)

1 Sl
FGdy + Zg//Pr[A J FG dy + [ (FG) dy — B J Fd)]}
. 0 Jo 0

~ ™
(FG). dn — A J Fdn}

JO o

1
(FG)‘dr;—BJv Fdn}
Q
i
Y. v
Flow 3
e—
| |
1 | |
4 X. a2
1 2
12 {x,y) Phvsic2l Plage
n
4 3
1 L

L.

Figure 1 Physical and transformed planes of the problem under
consideration

1b. ( §,7 ) Transformed Plane
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A and Ay arc the step size increments in & and 5 directions
respectively. The individual sets of equations form a tridiagonal
matrix {Roache, 1976) and are solved using the simple Thomas
algorithm, which factorizes the matrix into two triangular
matrices (by assuming a linear relationship) and uses forward
and backward substitution.

The computation starts first calculating d,, .. P o Cor e Ay e
€. m and w,, , at the wall and continues through the free surface.
The solution sweeps back from the free surface to the wall
boundary condition by calculating the velocity vector F, , by
the recursion relationship of Equation 26. The flow field is
solved simultaneously with the film thickness, Froude number.
and Reynolds number in the radial direction. Therefore, the
solution technique is an implicit parabolic marching method
starting from the inlet condition where an initial thin film is
generated and enters the control volume. to where it continues
depending upon the Froude number.

The marching in the dimensionless horizontal distance
(& = x/h,,) starts at the inlet by using the initial Froude number,
Reynolds number. and a guessed velocity ficld. The inlet
conditions denoted by a subscript m = 1 are given by

Fq=0.2¥ =Rey .0, =0 =-Fr2 -1, ,=0 and
Fln=0)

I o TR
lfFrflj F2dy
O

where the Reynolds number is defined based on the film
thickness h: ic.. Re, = hu,/v.

After the velocity field convergence is achieved. the new
values of 2y, ff, 0. and 7 are calculated from Equations 11. 13.
14, and 15, respectively, which are then 1o be used for the next
downstream location.

The new dimensionless film thickness A,,. Reynolds number
Re,,. and Froude number Fr., as m=23.4....j. j+ | are
calculated along the radial dircction. and given by

— (hih,,), = [ Y, Fr2
Fr = RehmFr 2 /Re} A}

m

S RewJAS + A,

Rehm = amAg/Am + Rehm -1

The procedure stops when an average Fr = 1 1s achieved at the
critical state. The marching parabolic method cannot pass
through critical.

Numerical solution of the thermodynamic
problem

The same numerical method 1s applied as for the hydro-
dynamical problem to solve the temperature profile. The
derivatives in thin-layer Equation 21 are replaced by the
central-difference approximations in y-direction and backward-
difference approximations in ¢-direction to be defined in the
Thomas algorithm (Roache, 1976).

Rewriting the nondimensional encrgy equation in the finite-
difference form and rearranging

Gme = 0'" (Jm w1t \’\m " ‘27)
where
Pl A
u;" . — 1 _ m.n 77
' 2
2, PrAy?
b’me =2+ ZI/IWPTAF”‘Q"Ai]Z + Wm Tan Fm.n
Al
182

;=14 PV, AN
Copn = + 5
G
— 1l
m n - “merFm "AI’[ . - B
AL
v e
mn T, v '
bm n (m ncm n—1
d + ¢

; __ T mn mn*l

W=
m.a b
The computatlon starts first caleulating a;, . b, .. € 4,y
e, . and w  at the wall at each m station and then the value
of A, which satisfies the boundary conditions, is calculated by
the bisection or half-interval method (Cheney, 1985). For all
the boundary conditions, the starting value for 4 at the initial
station m = 1 is zero or G(¢ = 0) = 0 condition. Afterward, the
computation continues through the free surface by incorpora-
ting the previously calculated velocity field. Then, the values of
G,, , are computed inwardly from the free surface to the wall
boundary.

For both the evaporation and heating with constant wall
heat flux case, at the first station (m = 1) any trial value of G, (0)
is guessed. and the corresponding 4 value is computed to
ensure that G.(¢ =0)=0. At the subsequent stations, both
variable G,(0) and A are computed.

The wall boundary value of G,(0) is a fixed value for the
constant Nusselt number, zero for the adiabatic wall surface,
and variable for the constant wall heat flux case. An initial G, ,
profile is assumed for the heating with constant Nusselt
number, and the constant wall heat flux, and every m station
two loops one for the convergence of B, and one for the
convergence of G,(y = 0) are employed.

The solution has more than one¢ root for A. However, the
stability criteria of the Thomas algorithm is not satisfied, except
for the first root of A (Cakmakci, 1993).

— oy

mo mnmoan—1

Results and discussion

The parabolized thin-layer equations (Equations 7 and 21)
describing free surface flows with their corresponding boundary
conditions have been solved by an implicit marching method
employing the tridiagonal algorithm for four inlet Reynolds
numbers (100, 1000, 5000, 10000) and five inlet Froude numbers
(0.2, 5.0, 10.0, 15.0,20.0). The results are given in Figures 2—10.
The Froude number profiles for subcritical and supercritical
flows are shown in Figures 2 and 3. As the Froude number

18
[la,h = ]O_Q___ ':e.hl: §090_
Re (= 1000 _ Re py = 10000
W o10-
- NN
E \ ~ \~
z ~ S~
4 \ Sl T~
P S~ e
= \ T~ Tt
\ N T
N
Q-7 f T Y | I
0 500 1000 1500 2000 2500 3000 3500

Nimenslonless llorlzonlal Distance, ¢

Figure 2 Froude number profile for supercritical flows with
Frey = 10
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1.5
’ Rop= 100 Roy= 5000,
Rey =1000_  Rey = 10000
v | !
& 1~ I f ’
5 | |
s} | '
5 | ; /
a i .
n
:oosd | ) /
= / . -
/ e e
S R DN Py
0- f T I I — -
0 5000 10000 15000 20000 25000 30000

Dimensionless Ilarlzonlal Dislance, £

Figure 3 Froude number profile for subcritical flows with
Fr,, =0.2

104
rLﬂl:
T =
103 —*
102 -

Reynoics Number, Rey,

101 - /

100 -j——=

100

Dimenslonless !lorlzonial Distance, ¢

Figure 4 Reynolds number profile for supercritical flows with
Rey =100

becomes smaller for subcritical flows or becomes larger for
supercritical flows, it takes a longer distance to reach the critical
Froude number (Fr = 1). All flows may be computed up to the
critical state where a singularity exists and cannot pass through
Fr=1.

The Reynolds number profiles for supercritical flows are
shown in Figure 4. As the gravitational forces decrease. or
Froude number increases, the velocity of the fluid increases. in
turn,

The effects of changing the inlet Reynolds number and the
inlet Froude number on the film height are presented in Figures
5 and 6 for both subcritical and supercritical flows. By
increasing the inlet Reynolds number, the subcritical and
supercritical solutions can be sustained for larger distances
because of the bigger inertial forces. The increase in the fluid
velocity is correlated to an increasing viscous force, which
translates into an increase in the film thickness with distance
through the continuity equation in the supercritical region.
However, because of friction, film thickness decreases with
distance 1n the subcritical region. When the inlet Froude
number is high, the flow can maintain its supercritical status
for a longer distance because of the lower gravitational
forces. In the case of zero gravity, the flow stays entirely
supercritical, and a subcritical flow regime becomes impossible.
On the contrary, decreasing the inlet Froude number while the
inlet Reynolds number remains constant causes a longer
subcritical status because of the higher amount of gravitational
forces.

Int. J. Heat and Fluid Flow, Vol. 16, No. 3, June 1995

Comparing the results of the flow analysis with the
one-dimensional Chezy-Manning equation (Potter and Wig-
gert, 1991) there is less than 2% difference for subcritical flows
and less than 3% difference for supercritical flows, as shown
in Figures 5 and 6.

The heat transfer behavior (Equation 21} was solved by
incorporating the momentum equation in the solution
algorithm, for an inlet Reynolds number of 100, and two inlet
Froude numbers (0.2 and 10) with Prandtl number of 7. The
results are given in Figures 7-10.

less Flm Height, A

Dimension

Numerlcat, Ra ;= 100

10, Repy = 100

Nomerleal, e = 1000_

1D, Ray=5

T T 1 I T T
o} 1000 2D00 3000 4000 5000 6000 7000
Dimienslonlass ilorfzontal Distance, ¢

Figure 5 Comparison of film height profile for supercritical flows
with Fr,; =10

=

\"\.
——
\ \\
a 0.8- \ —
£ T
[ " .
:E 0.6 - " %"\
i %’»\
” \
Y
ol |
B | i
2
o
£
G 0.2+ Numerlcal, Re =100 1-0,Re,y = 1000 __ ___ Numerlcal, Re,, = 10000
=D, Reyy =100 |, Ropy=5000 12D, Rey = 10000
Humerleal, Ra = 1000_
0- T T T | |
4] 5000 10000 15000 20000 25000 30000

Dimensionless Horizontal Distance, ¢

Figure 6 Comparison of film height profile for subcritical flows
with Fry = 0.2

fyap, - Adiahalle Well

Utan), — Conslani Husselt b,

fvap. — Conslant Wall Temp.
aal, = Conslanl Wall Termy

1

Dimensionless Termperaiure, G

Figure 7 Dimensionless temperature profiles for subcritical flows
with Fr,, = 0.2
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The dimensionless temperature profiles for the evaporation
and heating cases are shown in Figures 7 and 8. The profiles
appear to be similar for subcritical and supercritical cases.
which are parabolic in nature and linear for evaporation
constant wall temperature cases.

Comparing the results of the heat transfer analysis with the
analytical solution, the temperature distribution was expected
to be linear for the evaporation constant wall temperature, and
Figures 7 and 8 show that fact (Cakmakci, 1993).

The distributions of the Nusselt number for the subcritical
and supercritical cases are shown in Figures 9 and 10. The
Nusselt number considered for the problem depends upon two
parameters: namely, the film height and the heat transfer
coefhicient. Nusselt number remains approximately uniform for
an isothermal surface as an indication of a stable thermal
thin-layer thickness. [n the subcritical region, there is a sudden
drop of the Nusselt number ncar the entrance for constant wall
heat flux surface, and decreases gradually downstream when
there is evaporation, but decreases monotonically for the
heating case. The heat transfer coeflicient decreases with the
growth of the thermal thin laver causing more resistance to
heat transfer from the wall. For the heating case. because the
free surface is adiabatic in nature, there is a much slower
decrease in the heat transfer coefficient than the evaporation
case. Although the film height decreases with the distance in
the subcritical regime, the thermal layer increases. causing the

Fvap, ~ Constant Wafl Temp. lsal, = Constant Nussell th, __

teal, = Constanl Wal _ Eap,

Dimensionless Temperature, G

n

Figure 8 Dimensionless temperature profiles for supercritical flows
with Fry, =10

4 —_— -
’7 Evaporation ~ Conslanl Wall Termp. Evaporalion — Conslant Wall fleal Max

Nusselt Number, Nu
o
\

0 T I T T :
0 50 100 150 200 250 300

Dimenslonless |lorizonlal Distancs, ¢

Figure 9 Nusselt number profiles for subcritical flows with
Fre, =02
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L ~ T e e
3 .
: -~
5o .
5 e
133 - -
B T
=z

1

0 T T I T T
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Dimenslonlass Horlzonial Distance, ¢

Figure 10 Nusselt number profiles for supercritical flows with
Fro, =10

drop of the Nusselt number. This phenomenon can only be
explained by the fact that the solutions are for the fully
developed region where the Reynolds numbers are high, and
the entire film thickness is engulfed by the thermal thin layer.
In the supercritical region, the behavior of the Nusselt number
1s analogous o the subcritical flow except near the entrance.
The decrease of the Nusselt number is not sudden but gradual.

Finally. although this problem was solved for the
incompressible fluid, a similar approach used for the solution
of the compressible boundary layer equations (Hankey and
Holden, 1975) can be applied for variable density free surface
flows. Variable density requires coupling of energy equation
with momentum equation and adds an iteration.

Conclusion

Free surface flows wherein a portion of the uppermost
boundary of the flow is subject to no boundaries are commonly
found during condensation on a solid surface in a heat
exchanger or cooling tower, in metal industries, in irrigation
systems, and film-cooling processes. Beyond practical applica-
tions, the mechanics of free surface flows is important from a
theoretical point of view, because viscosity or skin friction,
variable geometrical boundary conditions that make it harder
to locate the free surface boundary. and free surface effects are
significant in these flows. Therefore, understanding such flows
1s essential and 1s the primary motivation for the present study.

A numerical parabolic method for the computation of
thin-layer equations describing free surface flows has been
developed to eliminate the need for specifying the skin friction
as in the onc-dimensional method, and to reduce the computer
time caused by the free surface boundary iteration, as in the
solution of the full Navier—Stokes equations. The analysis is
carried out in two parts. First, the hydrodynamics of the flow
arc studied where the skin friction value is determined
intrinsically for 2-D flow of an incompressible fluid. Next, the
thermodynamics of the same steady laminar flow are examined
by incorporating the hydrodynamics of the problem for many
different thermal boundary conditions.

An order-of-magnitude analysis is used for both the analysis
of flow and heat transfer to reduce the governing equations to a
parabolized set. The resulting equations are solved numerically
by an implicit marching method employing the Thomas
algorithm without the need to iterate the location of the free
surface boundary. As a result, the solutions were obtained with
at least one order-of-magnitude less computer time than the

Int. J. Heat and Fluid Flow, Vol. 16, No. 3, June 1995



Parabolic numerical method—free surface controls: S. R. Cakmakci and W. L. Hankey

elliptic Navier- Stokes method. The method successfully and
rapidly solves a wide variety of problems for different sub- and
supercritical flows.
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