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Although one-dimensional analysis is a classlcal, accepted method used extensively in 
the literature and has been commonly used for the comparison with approximation 
methods for the solution of free surface flows, the requirement to specify the skin friction 
coefficient value has always been a constraint with which previous investigators have had 
trouble. The alternative method of solving the full Navier-Stokes equations requires 
substantial computer time because of the iteration necessary to resolve the location of the 
free surface boundary. A relatively simple parabolic numerical method for the thin-layer 
equations in two dimensions to solve the free surface flows without the need of assuming 
the skin friction coefficient and the need of iterating the free surface boundary is the 
purpose of this investigation. An order-of-magnitude analysis is used to reduce the elliptic 
governing Navier-Stokes equations to a parabolized set for high Reynolds numbers. The 
resulting equations are discretized and solved numerically for different sub and super- 
critical flows, various Pr. Fr, and Re numbers and for many different thermal boundary 
conditions using an implicit marching method employing the tridiagonal algorithm. 
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Introduction 

Free surface Row refers to the How of liquid M herein a portlon 
of the uppermost boundary of the How called the free surface 
is subject to atmospheric pressure. The movement of oceans. 
rivers, and irrigation systems. as well as the flow of liquids in 
partially tilled pipes, and Rows in canals arc all examples of 
free surface Rows. The forces causing tlow are attributable to 
gravity. surface tension. and the forces retarding How arc 
attributable to viscous shear. Thus, the Weber number. the 
Froude number, and the Reynolds number are involved. When 
Row occurs at low velocities so that a small disturbance can 
travel against the flow and thus effect the conditions upstream. 
it is said to be subcritical How (Fr < I ). If. on the other hand. 
the velocity of the stream is so high that a small disturbance. 
such as an elementary wace. is washed downstream. the Ron 
is controlled by upstream conditions and is described as 

supercritical (Fr > I). When How velocity is just equal to the 
elementary wave velocity, the How is called critical (Fr = I). 

The complete solutions of free surface tlows are usualI! 
difficult to obtain because of the Lariable geometrical 
conditions and the state of the boundary surfaces. Therefore. a 
choice of a suitable friction factor is likely to be very uncertain. 

Two general approaches arc used for analyTing free surface 
flows: (I) the Navicr-~Stokcs method. which is elliptic and 
requires at least an order of magnitude greater computer time 
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than the parabolic method used in this paper: and (2) the 
one-dimensional method (Potter and Wiggert). which is rapid 
but requires specification of the skin friction that could be 
constant or vary as a function of axial distance. 

I- or two-dimensional (2-D) free surface flows, numerical 
methods have been used by a number of investigators. Kothe 
and Mjolsness (1992). developed a numerical method for 
incompressible flows with free surfaces having significant 
surface tension forces. JimcnCz and Chaudhry (1988) solved the 
supercritical free surface Hows by explicit numerical methods. 
Fennema and Chaudhry (1990) studied the explicit numerical 
methods for 2-D free surface flows. Rahman et al., (1990a. 
199Ob) solved the full Navier-Stokes equations by iterating the 
free surface boundary of free surface flows. 

The brief literature survey presented in the foregoing reveals 
no paraboliLed numerical method to solve the free surface flows 
wlthout requiring excessive computer time, or the skin friction 
coetticient. which is the purpose of this investigation. 

A method is developed in this paper that determines the skin 
friction value intrinsically but saves over an order of magnitude 
in computer time compared to solving the complete 
Ya\ler-Stokes equations. The method involves a parabolic 
procedure for the thin-layer equations describing free surface 
tlows. This approach is analogous to parabolized iVavier-- 
Stokes equations (PNS), which are popular in the aerospace 
industry and used to solve compressible supersonic flows 
(Hankcy. 1983). The Space Shuttle and the Aerospace Plane 
programs have exploited the use of PNS. The approach herein 
adopts this concept to solve difficult free surface flows. 

The 2-D free surface flows for the steady laminar flow of a 
viscous incompressible fluid with heat transfer have been 
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analyzed for both subcritical and supercritical flow conditions. 
Typical applications of this proposed parabolized solver for the 
thin-layer problems are for liquid cooling of elements used in 
coating processes. drying of different materials. gas absorption 
processes, and condensation processes. 

Mathematical modeling of the 
hydrodynamical problem 

The 2-D (.Y. ~3) governing equations of continuttv and 
momentum for the laminar steadv flow of Newtonian fluid wtth 
constant properties (dynamic &osity 11, and density I’ arc 
constants), without a velocity component in the z-direction 
(M = 0). and without the body forces in z and : directions in 
rectangular coordmatcs. with the assumption that the velocity 
film thickness /I(.\-) is very thin compared with the radial 
distance .Y; i.c.. .Y >> h(.u) as a result of the order-of-tnagnitudc 
analysis are as follows: 

(II 

The boundary conditions are as follows: 

(I) No slip at wall; i.e., at j‘ = 0: II = I‘ = 0 
(2) \‘ = hl.y): 14 = I$,(\-I 

At the free surface i = /I( Y). the elfects of interfaciai shcat 
stress and the surface tension arc assumed to be xro. although 

The following transformation of independent variables 
convjerts the original domain or physical plane into a 
rectangular region or computational plane (Hankey and 
Holden. 1975): 

;= 1;d.v. ,j = l’h 8”. ~1 = y/‘h(.x) (4) 

F(<, ‘1) = u/u,. (5) 

where U, = .x-component of edge surface velocity; P, = 
atmospheric pressure (static part); 2&/?~ = viscous normal 
stress: /y(h(z) - ~3) = potential component of the pressure field; 
It = velocity film thickness as a function of radial distance x; 
and It,,, = constant inlet film thickness. 

By using the transformations. it is now possible to apply 
finite dih’erences on a uniformly spaced grid in the 
computational plane with the boundaries coinciding with the 
lines rl = 0 and FI = I. To do this. the governing equations 
(Equations I and 2) arc transformed in terms of 5 and ye by 
applying the chain rule of partial differentiation. Then, the 
resulting thin layer equations arc cast in conservation form in 
order to apply numerical schemes. 

Thus. the governing equations become as follows: 

t fI = (1 ~I,JLll,n.,F,~ + 5.,(u,.FJ:l 

k,,,, ~ I F,, - /iF’ = ;’ + ‘$FF& 

Mherc 

c = (II 1,)Ir - u,,Fr$t,) 

/I = (,$ \‘JU,. 

I‘ = (jh’gh; w,,) 

71/J = (,jll’U, I’) 

(6) 

(7) 

(IO 

(9) 

(10) 

(11) 
these can simply be added if desired. 

To determine the prcssure held for the problem. the 
r-momentum equation is integrated with respect to 1’. and 
applying the free surface boundary conditions the pressure field 
becomes the following: 

By taking the derivative of Equation 8 with respect to q and 
cotnhintng with Equation 6 

P = -(‘C/J + P , + p/h(z) + 2/l 
( /’ 

where CT = jh(hu,,)Jr, and jr. $, and ;’ are the functions of r, 
( 3 1 By defining Froude number based on the edge velocity 

ii, b r,, = II, (c/h)’ l, the relationship between the (T. /I, and Y is 

Notation 

k 
Nu 
P 

Pr 
Q 
Re 
T 

14 

dimensionless temperature gradient 
dimensionless velocity 
Froude number 
grav,itational acceleration 
dimensionless temperature 
vpelocity film thickness 
thermal film thickness 
transformation function 
thermal conductivity 
local Nusselt number 
pressure 
Prandtl number 
volume flow rate per unit width 
Reynolds number 
temperature 
component of velocity in Y direction 
component of velocity in J‘ dtrection 
component of velocity in IV direction 

; 

1’ 

thermal diffusivity 
dimensionless film height 
increment in q direction 
increment in < direction 
dimensionless function 
dynamic viscosity 
kinematic viscosity 
dimensionless horizontal distance 
density 

6’ edge 
in condition at entrance 
111 node location in Y direction 
II node location in J’ direction 
sat saturation 
I,’ condition on solid wall 
I atmospheric 
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obtained as A dimensionless function G is introduced 

cr = /I + ;’ Fr: 

The boundary conditions become 

(131 

(1) rj = 0: F = 0, v = 0 with the boundary conditions 

(I ) J‘ = 0. T = T,,., G = 0 
(2) 1 = h(z). T = r,. G = I 

(2) r/=l;F=l,F,l=O, G,=O 

where the subscript e stands for .‘thc edge of” free surface, and 
the subscripts ~11, ,I. <. Y. and J’ denote the derivatives. 

Integrating Equation 12 at the free surface by using the 
relationship of h, = (.,:1~, gives the following: 

Pl 

? 
F, drl 

a=-&$ n 

I 

1 (14) 

Fdrl 
0 

where T, is the wall temperature; T, is the temperature at the 
edge of the free surface; and both TX, and T, are functions of 
radial distance .Y only. 

By using Equations 4. 5, 8, 11, and 20. the energy equation 
is nondimensionalized as follows: 

Go,, - Prl’G, = 21// Pr F(GS + AG + B) 

where 

Integrating Equation 7 by using Equation 12, and the 
definitions of /I and 0 with the boundary conditions. and 
recollecting terms T can be rewritten as follows: 

Pl 1 
2cr 

! 
F’ drj i- 41j/ 

i 
FFldrl + F,,I~I = 0) 

y=-- 0 - ~~ “0, (15) 
I - Fr3 

i 
F’ dtf 

. 0 
In addition. an initial condition at x = 0: I.c.. I< = 0) is 

required for u. The arbitrary condition selected for this case is 
F; = 0. or an initial similarity start. Obviously. other initial 
conditions may be explored. 

B= Tr;, 
7, - r,, 

(23) 

Pr is the Prandtl number, and il and B are dimensionless 
temperature gradients. Integrating Equation 21 by using 
Equation 12 with the boundary conditions and recollecting 
terms 

G,,(rl = I) ~ G,(r/ = 0) 

For the similarity solution at the mlet, F is only a function 
of q, and 0, p, and Y are all constants; therefore, the general 
free surface flow solutions (Equations 7 and 12) reduce to 

F,, - VF, - /IF2 = Y (16) 
and 

,-I 

= Pr 
! 

[Iri + 2$A)FG + 2+(FG), + 21//BF] dg (24) 
Y /I 

The Nusselt number Nu, in terms of film thickness is as follows 

T/,+aF=O (17) 

Finally. the constant volumetric flow rate per unit width 
perpendicular to the flow plane Q becomes the following: 

Nu, = G,,oI = 0) (25) 
To demonstrate the versatility of the method, an assortment 

of different boundary conditions are examined. 
The boundary conditions are assumed to be: A) the same as 

the equilibrium temperature corresponding to the ambient 
vapor pressure (evaporation case) at the free surface with Al) 
constant wall temperature, A2) adiabatic wall surface, A3) 
uniform heat flux on the wall. and A4) constant Nusselt 
number: B) adiabatic free surface condition or heating case with 
Bl) constant wall temperature. B2) uniform heat flux on the 
wall. and B3) constant Nusselt number. 

Also. an initial upstream condition T(0, r) is required to start 
the calculation. An arbitrary condition of G; = 0, or an initial 
similarity start was selected. Obviously, other initial conditions 
can be explored. 

Mathematical modeling of 
thermodynamic problem 

(IX) 

the 

To determine the thermal distribution it is necessary to solve 
the equation resulting from the substitution of the solution of 
the hydrodynamic problem into the energy equation. By using 
the same assumptions as used for the hydrodynamical part of 
the problem, and implementing the order-of-magnitude 
analysis, the governing equation of energy for the laminar flow 
of a Newtonian fluid with constant properties (thermal 
conductivity k = constant, density /j = constant) in rectangular 
coordinates is 

It is assumed that both the velocity film thickness h and 
thermal film thickness h, are very thin compared with the radial 
distance X. 

(20) 

(21) 

Table 1 summarizes the boundary conditions. 

Numerical solution of the hydrodynamical 
problem 

To apply finite-difference methods, a finite-difference mesh in 
the s-t? plane is considered (Figure 1). The values of the 
dependent variables at a grid point are identified by subscripts 
n? and n to indicate positions along the <- and q-directions. 
respectively. 

The derivations in Equation 7 are replaced by the 
central-difference approximations in the q-direction and 
backward-difference approximations in the [-direction. Re- 
writing the thin-layer nondimensional .x-momentum (Equation 
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Table 1 Boundary conditrons 

At the free surface ‘1 = 1 : 

Evaporafion T, = T,,, = constant, G = 1 

Hearing ;T/;y = 0. G,, = 0 

At the wall ~1 = 0: 

1 ) Constant wall temperature, T = T, = constant, G = 0 

Evaporation A = 6 = 0, G ,,,, - Pr I/G,! = 2r,+PrFG. 

s 

1 a, 
G,,(rj = 1) ~ G,.(,I = 0) = Prci FGdq + 2$Pr 

J 
(FG): drl 

Heating A = TJ(T, - T,). B = 0, G,,,, ~ PrVG,, = 2$PrF(G, + AG) 

i 

1 
-G,i(q = 0) = Prrr 

uo 
FGdrf +:rjPr[Al: FGdl+JI (FG)-dq] 

2) Adiabatic wall surface. iTiiy = 0. G,, = 0 

Evaporation A = -T,./(T, T,), f3 = -A, G,,,! - PrVG,, = 2$PrF(G + AG - A) 
-, 

G,](rl = 1) = Prrr 1 
-0 

FGdir+2$Pr[AJiFGdr/+J[: (FG).drl-Aj’l Fdlr] 

3) Constant wall heat flux: - k;T/iy = qW = constant, (4,. = 0) 

Evaporation A = - T,./( T, Tw) = ;,Frz/2ti ~ G,,.(rr = O)/G,,(q = 0). B = A 
*‘1 “1 

I ! 

-1 PI 

G,,(q = 1) - G,,(rl = 0) = Prrr FGdy + 2$Pr A FG d,r + (FG). dt/ - A ? 1 F dtl 

Heating A = (T, ~ T,).!(T, T,) = Frzl2(i, ~ G,,(r) = O)iG,,(rl = 0) 
PI 

~ G,,(t/ = 0) = Prrs ( FGdrl +“:rjPr[A 1: FG d?r :l[r (FG) ,I- B 1: Fdr!] ’ 
.Jo 

4) Constant Nusselt number: Nub = constant, (G,! (,I = 0) = 0) 
Evaporation A = - Tw.i( T, ~ Tw) = ;,Frz,l2rj + qw,/qw, B = ~ A 

T-1 

G,](q = 1) ~ G,,(q = 0) = Prci 
! 

F dtf 

’ 

Heating 
-1 

-G,,(rl = 0) = Prcr 1 
.o 

where T,,, is the saturatron temperature, and q, is the wall heat flux. 

7) in the finite-difference form and rearranging (Chcnq and 
Kincaid, 1985) 

F “l.ll = ~,n..Fm,,+, + ‘(‘m,,,, (261 

where 

ll,,, = 1 - C;..& 
2 

Int. J. Heat and Flurd Flow, Vol 16, No. 3, June 1995 

L 

1 e ( x, y ) P&3icll Plane 

1 b. ( 5, q ) Transformed Plmc 

Fjgure 7 Physrcal and transformed planes of the problem under 
consrderation 
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A< and At7 arc the step stze increments in < and rl directions 
respectively. The individual sets of equattons form a tridiagonal 
matrix (Roache, 1976) and are solved using the simple Thomas 
algorithm. which factorizes the matrix into t\hfo triangular 
matrices (by assuming a linear relationship) and uses forward 
and backward substitution. 

The computation starts first calculating (I,, ,,,. h, ,,,, c’“,,,,. d ,,,, ,,. 
, and M at the wall and continues through the free surface. 

%E soluti% sweeps back from the free surface to the wall 
boundary condition by calculating the velocity vector F,,,,, by 
the recursion relationship of Equation 26. The flow field is 
solved simultaneously with the film thickness. Froude number. 
and Reynolds number in the radial direction. Therefore, the 
solution technique is an implicit parabolic marching method 
starting from the inlet condition where an initial thin film is 
generated and enters the control vjolume. to where it continues 
depending upon the Froude number. 

The marching in the dimensionless horizontal distance 
(ij = ~u’h,,) starts at the inlet by using the initial Froude number. 
Reynolds number. and a guessed velocrty ticld. The inlet 
conditions denoted by a subscript ~1 = 1 are grvcn by 

F., = 0. 2’f”, = Rc,, , CT, = 0. /I, = ;‘, Fr:, I’ ,,,, = 0 and 

where the Reynolds number is defined based on the film 

thickness h: i.c.. Re, = IIU,. I’. 
After the velocity field convcrgcnce is achieved, the ncvv 

values of 311/. /j, g. and ;‘ are calculated from Equattons I I. 13. 
14, and 15, respectively. vv hich are then to bc used for the next 
downstream locatton. 

The new dimensionless film thickness A,,,. Rcynalds number 
Re,,. and Froude number Fr,,,, as m = 2. 3. 1.. j. j + I are 
calculated along the radial dircctton. and g~vcn by 

Am = (h:‘h,Jn = [I‘,,,Frz,,, Rr,,]AZ + A,,,- , 

Frf, = Rek,,,Frz, ~Re~,A~~ 

Re,, = rr,,,A<;A,,, + Reh,,l , 

The procedure stops when an average tr = I IS achieved at the 
critical state. The marching parabohc method cannot pass 
through critical. 

Numerical solution of the thermodynamic 
problem 

The same numertcal method IS applted as for the hydro- 
dynamical problem to solve the temperature profile. The 
derivatives in thin-layer Equation 21 are replaced by the 
central-difference approximations in r/-dtrection and backward- 
difference approximations in <-direction to be defined in the 
Thomas algorithm (Roache, 1976). 

Rewriting the nondimensional energy equation tn the finite- 
difference form and rearranging 

G m.,, = 4n,,~,,,.,, + I + M.; ,,., / 1’77) 

where 

(I,,,, = I - Pr ~~,.,,Av 
? 

b:.,, = 2 + ?$,,,PrA F,,,,Arl’ + Qn,PrAv’F,,,,,, 
A: 

The computation starts first calculating a;,,, hk,,, CL.,,, &,,. 
(l’ n1.n. and %Lti at the wall at each m station and then the value 
of A, which satisfies the boundary conditions, is calculated by 
the bisection or half-interval method (Cheney, 1985). For all 
the boundary conditions. the starting value for A at the initial 
station HI = 1 is zero or G:(< = 0) = 0 condition. Afterward, the 
computation continues through the free surface by incorpora- 
tmg the previously calculated velocity field. Then, the values of 
G,. ,I are computed inwardly from the free surface to the wall 
boundary. 

For both the ev,aporation and heating with constant wall 
heat flux case, at the first station (m = 1) any trial value of G,,(O) 
is guessed. and the corresponding A value is computed to 
ensure that G;(< = 0) = 0. At the subsequent stations, both 
variable G,,(O) and A are computed. 

The wall boundary value of G,(O) is a fixed value for the 
constant Nusselt number, zero for the adiabatic wall surface. 

and variable for the constant wall heat flux case. An initial G,,, 
profile is assumed for the heating with constant Nusselt 
number. and the constant wall heat flux. and every WI station 
two loops one for the convergence of B, and one for the 
convergence of G&t? = 0) are employed. 

The solution has more than one root for A. However, the 
stability criteria of the Thomas algorithm is not satisfied, except 
for the first root of A (Cakmakci. 1993). 

Results and discussion 

The parabolized thin-layer equations (Equations 7 and 21) 
describing free surface flows with their corresponding boundary 
conditions have been solved by an implicit marching method 
employing the tridiagonal algorithm for four inlet Reynolds 
num bets ( 100, 1000. 5000, 10000) and fivje inlet Froude numbers 
(0.2. 5.0. 10.0. 15.0, 20.0). The results are given in Figures 2-10. 

The Froude number profiles for subcritical and supercritical 
HOW are shown in Figures 2 and 3. As the Froude number 

IS , 

Figure 2 Froude number proflle for supercritical flows with 
Fr,, = 10 
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Figure 3 Froude number orofrle for subcrrtrcal flows wrth 
Fr,, = 0.2 

100 -I- 
O 20 4" BO 8" 

DImensIonless llorlzonl~l Dlslonca. ( 

Figure 4 Reynolds number profrle for supercrrtrcal flows wtth 
Rehl = 100 

becomes smaller for subcritical flows or becomes larger for 
supercritical flows, it takes a longer distance to reach the critical 
Froude number (Fr = I). All flows may be computed up to the 
critical state where a singularity exists and cannot pass through 
Fr= 1. 

The Reynolds number protiles for supercritical flows arc 
shown in Figure 4. As the gravitational forces decrease. or 
Froude number increases. the velocity of the fluid increases. in 
turn. 

The effects of changing the inlet Reynolds number and the 
inlet Froude number on the film height are presented in Figures 
5 and 6 for both subcritical and supercrttical flows. By 
increasing the inlet Reynolds number, the subcritical and 
supercritical solutions can be sustained for larger distances 
because of the bigger inertial forces. The increase in the fluid 
velocity is correlated to an increasing v(iscous force, which 
translates into an increase in the film thickness with distance 
through the continuity equation in the supercritical region. 
However, because of friction, film thickness decreases with 
distance in the subcritical region. When the inlet Froude 
number is high, the flow can maintain its supercritical status 
for a longer distance because of the lower gravitational 
forces. In the case of zero gravity. the tlow stays entirely 
supercritical, and a subcritical flow regime becomes impossible. 
On the contrary, decreasing the inlet Froude number while the 
inlet Reynolds number remains constant causes a longer 
subcritical status because of the higher amount of gravitational 
forces. 

Comparing the results of the flow analysis with the 
one-dimensional ChezyyManning equation (Potter and Wig- 
gert, 1991) there is less than 2% difference for subcritical flows 
and less than 3% difference for supercritical flows, as shown 
in Figures 5 and 6. 

The heat transfer behavior (Equation 21) was solved by 
incorporating the momentum equation in the solution 
algorithm, for an inlet Reynolds number of 100, and two inlet 
Froude numbers (0.2 and 10) with Prandtl number of 7. The 
results are given in Figures 7710. 

I I I I I I 
1000 moo 3000 4000 5000 fiooo 71 

DImensIonless I larlzonlol Dlslonce. ( 
0 

F!gure 5 Comparison of film herght profile for supercrrtical flows 

Figure 6 Comparison of film height profile for subcritical flows 
with Fr,, = 0.2 

0 

Figure 7 Dimensionless temperature profiles for subcritical flows 
wrth Fr,, = 0.2 
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The dimensionless temperature profiles for the evaporation 
and heating cases are shown in Figures 7 and 8. The profiles 
appear to be similar for subcritical and supercritical cases. 
which are parabolic in nature and linear for evaporation 
constant wall temperature cases. 

Comparing the results of the heat transfer analysis with the 
analytical solution, the temperature distribution was expected 
to be linear for the evaporation constant wall temperature. and 
Figures 7 and 8 show that fact (Cakmakci. 1903). 

The distributions of the Nusselt number for the subcritical 
and supercritical cases are shown in Figures 9 and IO. The 
Nusselt number considered for the problem depends upon two 
parameters: namely, the film height and the heat transfer 
coefficient. Nusselt number remains approximately uniform for 
an isothermal surface as an mdication of a stable thermal 
thin-layer thickness. In the subcritical region, there is a sudden 
drop of the Nussclt number near the entrance for constant wall 
heat flux surface, and decreases gradually downstream when 
there is evaporation but decrcascs monotonically for the 
heating case. The heat transfer coefficient decreases with the 
growth of the thermal thin layer causing more resistance to 
heat transfer from the wall. For the hcatrng case. because the 
free surface is adiabatrc in nature, there is a much slower 
decrease in the heat transfer coefficient than the evaporation 
case. Although the film height decreases with the distance in 
the subcrrtical regime. the thermal layer increases. causing the 

0 -I 1 I 1-1-l------ 
0 10 20 30 10 50 60 

Dlmenslonlass I lorlzonld Dlslonce, 6 

Figure 10 Nusselt number profrles for supercritical flows with 
Fr,, = 10 

drop of the Nusselt number. This phenomenon can only be 
explained by the fact that the solutions arc for the fully 
dev~clopcd region where the Reynolds numbers are high, and 
the cntrre film thickness is engulfed by the thermal thin layer. 
In the supercritical region, the behavior of the Nusselt number 
is analogous to the subcritical flow except near the entrance. 
The decrease of the Nusselt number is not sudden but gradual. 

Finally. although this problem was solved for the 
rncompressible fluid, a similar approach used for the solution 
of the compressible boundary layer equations (Hankey and 
Holden, 1975) can be apphed for variable density free surface 
flows. Variable density requires coupling of energy equation 
with momentum equation and adds an iteration. 

Conclusion 

P 

Figure 8 Drmensronless temperature profrles for supercrrtical flows 
with Fr,, = 10 

3 -. 

i \ 

2 2- \;=:-, 

-. 
-c 
1 _-_- -------T---.---~ - ---- -2 2 ---___- -- 1 ----------- 

-_ ---._ 
l- 

---_ 

0-I I r7 I 1 I 
0 50 100 150 200 250 300 

Dlmsnslonless , lorlznnlol Dlslonce, ( 

Figure 9 Nusselt number profrles for subcrrtrcal flows wrth 
Fr,, = 0.2 

Free surface flows wherein a portion of the uppermost 
boundary of the How is subject to no boundaries are commonly 
found during condensation on a solid surface in a heat 
exchanger or cooling tower. in metal industries, in irrigation 
systems. and film-cooling processes. Beyond practical applica- 
tions. the mechanics of free surface Rows is important from a 
thcorctical point of view. because v,iscosity or skin friction. 
vartable geometrical boundary conditions that make it harder 
to locate the free surface boundary. and free surface effects are 
significant in these flows. Therefore, understanding such flows 
is essentral and is the primary motivation for the present study. 

A numerical parabolic method for the computation of 
thin-layer equations describing free surface flows has been 
developed to eliminate the need for specifying the skin friction 
as m the one-dimensional method, and to reduce the computer 
time caused by the free surface boundary iteration, as in the 
solution of the full PiavierStokes equations. The analysis is 
carried out in two parts. First, the hydrodynamics of the flow 
arc studied where the skin friction value is determined 
rntrinsically for 2-D flow of an incompressible fluid. Next, the 
thermodynamics of the same steady laminar flow are examined 
by incorporating the hydrodynamics of the problem for many 
different thermal boundary conditions. 

An order-of-magnitude analysis is used for both the analysis 
of flow and heat transfer to reduce the governing equations to a 
paraboliLed set. The resulting equations are solved numerically 
by an implicit marching method employing the Thomas 
algorithm without the need to iterate the location of the free 
surfzcc boundary. As a result. the solutions were obtained with 
at lcast one order-of-magnitude less computer time than the 
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elliptic Navier~ Stokes method. The method successfully and 
rapidly solves a wide variety or problems for different sub- and 
supercritical flows. 
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